
Fig. 3.2A.1 Selected types od planar microwave transmission

lines: a) open microstrip line, b) shielded

slot-line, c) fin-line, d) shielded coplanar line

Fig. 3.2A.2 Shielded microstrip

transmission line

(longitudinally

homogenous)

3.2 Shielded microstrip tranmission lines

Basic theory

Shielded microstrip transmission line is a member of the family of

planar  microwave  transmission  lines.  Open  microstrip  line  (fig.

3.2A.1a),  shielded  slot-line  (fig.  3.2A.1b)  shielded  fin-line  (fig.

3.2A.1c) or coplanar waveguide (fig. 3.2A.1d) belong to the most

common planar transmission lines.

Using segments of planar transmission lines, microwave circuits can

be composed.  Planar conductors can serve for connecting circuit

components  or  can  be  used  for  creating passive  circuit  elements

(capacitors and inductors, especially). Moreover, planar circuits can

be relatively simply completed by active elements (transistors and

diodes, e.g.). Therefore, the planar technology is of wide use these

days and analysis of planar structures is of rising importance.

In  this  paragraph,  we  deal  with  the  computation  of  the

electromagnetic field distribution in shielded microstrip transmission

line (fig. 3.2A.2),  which parameters are assumed to be constant in

the  longitudinal direction.  Then,  only a two-dimensional structure

has to be analyzed (cross-section of the transmission line),  which

simplifies computation [20].

Even if the above-described simplification is done,  field distribution in the shielded microstrip

transmission line cannot be computed analytically. Therefore, numerical methods or approximate

ones  have  to  be  exploited.  All the  methods  can  be  divided  into  two groups,  to  quasi-static

methods and to full-wave methods [20].

Quasi-static methods are based on the assumption that the dominant mode of the wave, which

propagates  along the  transmission  line,  can  be  approximated  (with  good  accuracy)  by  the

transversal  electromagnetic  wave  (TEM).  Unfortunately,  this  assumption  is  valid  on  low

microwave  frequencies  (typically  by  5  GHz).  If  frequency  is  increased,  then  the  value  of

longitudinal components of electromagnetic field rises, and hence, it cannot be neglected.

Working on  higher  microwave  frequencies,  full-wave  methods  have  to  be  exploited  for  the

analysis.  Full-wave methods are based on the direct solution of Maxwell equations.  Since the

transmission line is going to be analyzed in the harmonic steady state, Maxwell equations are of

the following form:

∇×E = − jωµ0 µr H, ( 3.2A.1a )

∇×H = + jωε0εr E + σ E + Js , ( 3.2A.1b )

∇ ⋅ (ε0εr E) = ρ, ( 3.2A.1c )

∇ ⋅ (µ0 µr H) = 0. ( 3.2A.1d )

Here, E denotes electric-field intensity vector, H is magnetic-field intensity vector, operator nabla is in Cartesian coordinate system of the form

,

JS denotes density of currents, which are imposed to the analyzed system by sources, ω is angular frequency, ε0 and µ0 are permittivity and

permeability of vacuum, εr and µr denote relative permittivity and permeability of dielectrics inside the analyzed structure, ρ is volume charge

density in dielectrics and σ denotes electric conductivity of dielectrics.

Assume that sources of electromagnetic field are in a large distance from the area where computations are performed (then, imposed currents Js

are zero in this area). Next, zero charge density is supposed in the structure and the media are expected to be linear and isotropic (permittivity

and permeability are scalar quantities, which do not depend on the value of respective field intensities). Further, dielectrics are assumed to be

lossy  (represented  by  electric  conductivity  σ)  and  all metallic  parts  (shielding waveguide,  microstrip)  are  expected  to  be  perfect  electric

conductors.

All the assumptions are substituted to (3.2A.1). Then, both sides of (3.2A.1a) are multiplied by the operator nabla from left (in vector way).

That way, curl of the magnetic-field intensity vector is obtained on the right-hand side of (3.2A.1a), which is replaced by the right-hand side of
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(3.2A1b). Finally, the following equation is obtained:

∇×(∇×E) = − jωµ0 µr(σ + jωε0εr)E. ( 3.2A.2 )

If the square of wave number in vacuum is denoted as

k0
2 = − jωµ0 jωε0 ( 3.2A.3 )

and complex relative permittivity of dielectrics as

εr̃ =
σ

jωε0
+ εr, ( 3.2A.4 )

eqn. (3.2A.2) can be rewritten to

∇×(∇×E) − εr̃ µrk0
2E = 0. ( 3.2A.5 )

Analyzed microstrip transmission line is situated to the Cartesian coordinate system (coordinates x and y in transversal directions, coordinate z

longitudinal).  Hence,  electromagnetic wave propagates along the axis z (along microstrip) and electric-field intensity vector depends on the

longitudinal coordinate according to

E(x, y, z) = E(x, y)exp(−γz), ( 3.2A.6 )

where γ is propagation constant

γ = β + jα; ( 3.2A.7 )

β is attenuation constant and α denotes phase constant.

Mathematical description of electromagnetic wave propagating in the direction z (3.2A.6), is substituted to vector equation (3.2A.5). Then, all

the partial derivatives according to z can be evaluated (respective terms are multiplied by the propagation constant -γ). Rewriting all vectors in

(3.2A.5) as a sum of the transversal component and the longitudinal one

E = Et + z0 Ez, ( 3.2A.8a )

∇ =∇t + z0
∂

∂ z
=∇t − γ z0 , ( 3.2A.8b )

we get

∇t ×(∇t ×Et) − γ(∇t Ez + γEt) = k0
2 µrεr̃Et , ( 3.2A.9a )

∇t ×[(∇t Ez + γEt)×z0] = k0
2 µrεr̃Ez z0 . ( 3.2A.9b )

Where as (3.2A.9a) is vector equation of transversal components, (3.2A.9b) is scalar equation of a longitudinal component.

The set of differential equations (3.2A.9) has to be completed by boundary conditions, which have to be met by the solution of (3.2A.9)

n0×Et = 0

Ez = 0}na  Γ1 , ( 3.2A.10a )

[∇t Ez + γEt] ⋅n0 = 0

∇t ×Et = 0}na   Γ2. ( 3.2A.10b )

Eqn. (3.2A.10a) describes the fact that components of electric-field intensity vector, which are tangential to the perfectly electrical-conductive

surfaces Γ1, have to be zero on those surfaces. Eqn. (3.2A.10b) expresses the fact that variation of components of electric-field intensity vector

in the normal direction with respect to perfectly electric-conductive surface Γ2 has to be zero on this surface.

Eqn. (3.2A.9) completed by boundary conditions (3.2A.10) are the initial relations to the full-wave analysis of microstrip transmission line. We

have to keep in mind, that eqns. (3.2A.9), (3.2A.10) cover the first Maxwell equation and the second one only, and therefore, the solution has

to be checked to meet the third Maxwell equation and the fourth one.  In the opposite case,  the solution would be physically non-existing

(spurious one).

In the following paragraphs,  we describe the way of implementing the full-wave analysis of a shielded microstrip line,  which is  based on

(3.2A.9) and (3.2A.10), by finite-element method.

First,  we briefly comment physical phenomena in the investigated structure because success of the analysis is conditioned by their correct

modeling.

First,  consider  a  hollow rectangular  waveguide (inside,  vacuum is  assumed).  In  such  waveguide,  a  transversal electric  wave (longitudinal

component of magnetic intensity is present) or a transversal magnetic one (longitudinal component of electric intensity is present) can propagate.
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Fig. 3.2A.3 Mesh examples of rectangular

bi-elements for the analysis of a

shielded microstrip transmission line

If  a dielectric  substrate is  inserted into the  waveguide (filling becomes inhomogeneous),  longitudinal components of  both the  electric-field

intensity and the magnetic-field one appear in the structure at the same time. In the opposite case, boundary conditions could not be met at the

interface between dielectric and vacuum.

Wave propagation in a waveguide of inhomogeneous filling can be described by hybrid modes LSM (Longitudinal Section Magnetic) and LSE

(Longitudinal Section Electric). Moreover, in inhomogeneous filling is completed by a metallic microstrip, transversal and longitudinal currents

are induced there, which mutually couple LSE and LSM modes.

Numerical analysis of wave propagation in a metallic waveguide (vacuum inside) is relatively simple because homogeneous wave equation is

needed to be solved for the longitudinal component of electric-field intensity (modes TM) or magnetic-field one (modes TE).  If microstrip

transmission line is going to be analyzed, attention has to be paid to two potential sources of spurious solutions.

First, production of spurious solutions can be caused by incorrect modeling of electromagnetic conditions on the boundary between the substrate

and vacuum. Second, incorrectly modeled influence of metallic strips can cause appearance spurious solutions. Exploiting hybrid finite elements

can eliminate both the causes.

Analyzing a shielded microstrip line by hybrid finite elements, all the components of electric-field intensity or magnetic-field one have to be

included into the computations. Eqn. (3.2A.9) is the initial relation of the analysis.

Matter of hybrid finite elements consists in modeling a longitudinal intensity component using nodal approximation, and transversal intensity

components using an approximation, which is based edge vectors.

Turn our attention to  the general solution of (3.2A.9) under conditions (3.2A.10) by finite-element method.  At every step of the general

approach, we discuss the operation of the method in our situation.

First, an analyzed structure is subdivided into sub-spaces (finite elements), which do not overlap and which cover all the points of the structure.

In the space of a finite element, parameters of the analyzed structure (permittivity, permeability, conductivity) have to be constant. There are no

restrictions to size and shape of finite elements. Finite-element mesh can be denser in areas where details of the solution are of our interest, and

can be relatively sparse in areas where details are out of our interest. Finite elements can be curvilinear, and therefore, an arbitrary geometry can

be modeled.

Analyzing longitudinally homogeneous microstrip transmission line,  two-dimensional problem is solved.  Therefore,  we turn our attention to

two-dimensional finite elements.  Leaving piecewise constant approximation,  a linear function is the simplest approximation function.  In two

dimensions, the linear function is a plane over a finite element (the computed quantity can be imagined to be drawn above the element).

If  three  points  uniquely  determine  the  approximation  plane,  the  analyzed

structure is subdivided to triangular finite elements. Coordinates of vertexes of

triangular  finite  elements  are  independent  variables  of  the  two-dimensional

linear  approximation.  Samples  of  sought  field  distribution  are  dependent

functional values.  Interlaying the approximation plane through the dependent

functional values in triangle vertexes, a unique approximation plane is obtained.

The  analyzed  structure  has  to  be  divided  to  finite  elements  very  carefully

because both the final error and CPU-time demands of the analysis strongly

depend on the mesh geometry.

In  fig.  3.2A.3,  two  examples  of  triangular  finite-element  meshes  for  the

analysis of shielded microstrip line are depicted. For simplicity, two triangular

finite  elements  create  a  rectangular  bi-element  together,  which  is  the  basic

building block of our mesh.

Mesh  A  is  homogeneous  (consists  of  identical  finite  elements).  Since

electromagnetic field  can be expected to quickly decrease with the distance

from the microstrip,  distant areas can be covered by a sparser mesh B.  As

shown later,  the mesh B negligibly decreases accuracy of the analysis,  but

significantly  reduces  CPU-time  demands  (lower  number  of  finite  elements

corresponds to lower number of mathematical operations).

In the second step of the solution, an approximation of a sought function over each finite element is expressed in a formal way. Usually, the

unknown solution is approximated by a linear combination of elected approximation functions and unknown approximation coefficients. A linear

function is the simplest approximation. As an example, we consider a general plane, which is uniquely determined by functional values of the

approximated function in three points of a finite element.

This general plane can be composed of three sub-planes (a linear combination), each of which is unitary in a single points of a finite element and
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which is zero in other two points of a finite element. Unknown approximation coefficients, which appear in the linear combination at partial

planes, play the role of spatial samples of the spatial distribution of computed quantity in points, where partial functions are of unitary value

(other functions are zero in this point,  and therefore,  they do not participate in sampling).  For the longitudinal component of electric-field

intensity, we get therefore

Ez
(n)(x, y) ≈ ∑

m = 1

Mn
cm Nm

(n)(x, y), ( 3.2A.11 )

where Ez
(n) is an approximation of a sought function over nth finite element, cm are unknown approximation coefficients and Nm

(n) are elected

partial approximation functions on nth finite element, Mn denotes the number of partial approximation functions exploited for composition of the

total approximation of sought function over nth finite element.

Collecting approximations over all N finite elements, a global approximation over the whole analyzed structure is obtained

Ez̃(x, y) ≈ ∑
n = 1

N
Ez

(n)(x, y).
( 3.2A.12 )

Eqn. (3.2A.12) is a single equation for M unknown approximation coefficients cm. If these coefficients are found, approximation of the sought

quantity is obtained.

More information about above-described approximation can be found in the layer B.

In the third step, the formal approximation of the solution Ez
~ is substituted to the solved partial differential equation. Since the approximation

differs from the exact solution, the initial equation is not met perfectly. This fact is respected by introducing a residual function, which equals to

the difference between the exact solution and the approximation

R(x, y) = Ẽ(x, y) − E(x, y). ( 3.2A.13 )

The approximation is as accurate as low values of the residual function are. Therefore, we are going to minimize the residual function over the

whole analyzed structure. The residual function is minimized exploiting the method of weighted residuals.

The method of weighted residuals consists in multiplying the residual function R(x, y) by a weighting function W(x, y). The product is integrated

over the whole analyzed space S and the result is set to equal zero

⌠
⌡
S

R(x, y)W(x, y)dS = 0, ( 3.2A.14 )

where dS = dx dy.

If  as many properly elected weighting functions Wn  are used as many unknown approximation coefficients are computed,  a set of  linear

equations  (as  many equations  as  unknown approximation coefficients)  is  obtained.  Solving this  set  of  equations,  unknown approximation

coefficients are obtained. If partial approximation functions of nodes, where nodal quantity is unknown, are elected as weighting functions the

method of weighted residuals comes to Galerkin method.

For nth finite element, the final matrix equation is of the form

where

T
t
(n)

E
t
(n)

= ∑
i, j

⎧
⎨
⎩
⎪
⎪

et, i j
(n) ∬

S (n)

⎡
⎣⎢Nt, rs

(n) ⋅N
t, i j
(n)⎤

⎦⎥dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2A.15a )

G(n) Ez
(n)

= ∑
m

⎧
⎨
⎩
⎪
⎪

ez, m
(n)
∬

S (n)

⎡
⎣⎢Nt, rs

(n)
⋅

⎛
⎝⎜∇t Nz, m

(n)⎞
⎠⎟
⎤
⎦⎥dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2A.15b )

Sz
(n)

Ez
(n)

= ∑
m

⎧
⎨
⎩
⎪
⎪

ez, m
(n)
∬

S (n)

⎡
⎣⎢
⎛
⎝⎜∇t Nz, q

(n)⎞
⎠⎟ ⋅

⎛
⎝⎜∇t Nz, m

(n)⎞
⎠⎟
⎤
⎦⎥ dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2A.15c )

Tz
(n)

Ez
(n)

= ∑
m

⎧
⎨
⎩
⎪
⎪

ez, m
(n)
∬

S (n)

⎡
⎣⎢Nz, q

(n)
Nz, m

(n)⎤
⎦⎥ dS

⎫
⎬
⎭
⎪
⎪

, ( 3.2A.15d )

S
t
(n)

E
t
(n)

= ∑
i, j

⎧
⎨
⎩
⎪
⎪

et, i j
(n)
∬

S (n)

⎡
⎣⎢
⎛
⎝⎜∇t ×N

t, rs
(n)⎞

⎠⎟ ⋅
⎛
⎝⎜∇t ×N

t, i j
(n)⎞

⎠⎟
⎤
⎦⎥dS

⎫
⎬
⎭
⎪
⎪

. ( 3.2A.15e )
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In  the  above relations,  Et
(n)  is  unknown column vector  of  edge  approximation coefficients  (approximation of  transversal components  of

electric-field  intensity)  over  nth  finite  element  and  Ez
(n)  denotes  column  vector  of  three  unknown  nodal  approximation  coefficients

(approximation of longitudinal component of electric-field intensity) over nth finite element. Next, γ denotes complex propagation constant, k0 is

wave number in vacuum, µr
(n) is relative permeability of nth finite element and ε~

r
(n) is complex relative permittivity of the same element.

Symbol dS denotes an elementary facet for the integration over nth finite element and symbol S(n) give the total surface of nth finite element.

Summation including index m symbolizes addition over all nodes of a finite element (i.e.,  m = 0,  1,  2) a summation including indexes i,  j

symbolized addition over all edged of an element (i.e., i, j = 0-1, 1-2, 2-0). Symbols et, ij
(n) are edge approximation coefficients, symbols ez,

m
(n) are nodal approximation coefficients.

Matrices Tt
(n), G(n), Sz

(n), Tz
(n) and St

(n) matrices of coefficients of nth finite element of the size 3 x 3. Elements of the above matrices are

computed by integration of the product of partial approximation functions and weighting functions (or their derivatives) over nth finite element.

Matrices can be evaluated using the following relations

S
t
(n)

=
1

A(n)

⎡

⎣

⎢
⎢
⎢

1 1 1

1 1 1

1 1 1

⎤

⎦

⎥
⎥
⎥
, ( 3.2A.16a )

T
t
(n)

=
1

12
∑

i = 0

2
Qi cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥,

( 3.2A.16b )

G(n) =
1
6

∑
i = 0

2
Ci cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥, ( 3.2A.16c )

Sz
(n)

=
1
2

∑
i= 0

2
Di cotg

⎡
⎣⎢θi

(n)⎤
⎦⎥, ( 3.2A.16d )

Tz
(n)

=
A(n)

12

⎡

⎣

⎢
⎢
⎢

2 1 1

1 2 1

1 1 2

⎤

⎦

⎥
⎥
⎥
, ( 3.2A.16e )

where

A(n) is surface of nth finite element and θi
(n) is angle at ith vertex of nth finite element. Given relations are valid for the following organization of

nodes and edges

E(n) = [ e
z,0
(n)

e
z,1
(n)

e
z,2
(n)

e
t,12
(n)

e
t,20
(n)

e
t,01
(n) ]

T

. ( 3.2A.16f )

If the matrix equation is solved out for the vector of unknown approximation coefficients, then solution of the problem is obtained. Substituting

approximation coefficients to the formal approximation, a real approximation of a sought function in each point of nth finite element is obtained.

Joining approximations over all finite elements, the global solution is found.

In the layer C,  the  reader  can find a matlab program for the finite-element analysis of  a  shielded microstrip  transmission line.  Prom the

programmer's point of view, the program is described in the layer D.
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