MW EME with Small Offset Dish

by Mirek Kasal OK2AQ

HughesNet

mirek@kasals.com

http://www.urel.feec.vutbr.cz/esl/files/EME/EME.htm

Outline

- 1. A bit of calculation
- 2. Small offset dish and right feed
- 3. Focused antenna
- 4. Sun, Moon and ground noise
 - 5. 3 cm EME operation with small dish
 - 6. 23 cm EME operation with small dish
 - 7. 1.2 cm preparation

Why we can use smaller antennas for **MW** EME ?

The loss of direct elmag. wave propagation in free space is proportional to the square of the distance and inversely proportional to the square of the wavelength. This means that at 10 GHz we have 20 dB more attenuation than at 1 GHz

Are the microwaves therefore disqualified for longer distances?

But why?

Including antenna gain, Link Budget at 10 GHz is 20 dB better than at 1 GHz.

And that's why we can work on MW EME with smaller antennas.

2 x

The dish with the same aperture has a gain of 20 dB greater at 10 GHz than at 1 GHz.

Why offset dish ?

10 GHz EME

Feedhorn for the f/D = 0.8

Focused Antenna – Prodelin 1134 -1,2 m

Sun Noise

Prodelin 1134 – 1,2 m

When focusing the antenna, it is necessary to record a wider range, say +/- 40 mm, and determine the correct focus position by interpolation.

Spectra Vue by RF Space

Moon noise and ground noise

Moon brightness temperature

Ref: John D. Kraus, Radio Astronomy, McGraw-Hill,1966, pp 339

19th International EME Conference, Prague 2022

Sun & Moon Noise

Prodelin 1194 – **1,8 m**

Ground Noise ?

Far Field For 1,8 m dish and $\lambda = 0,03$ m *FF* = 216 m

Radiometric scan around at 10 deg elevation.

Bit Wein Ipputtervice SoundCard IN Setup QuiputSetup ExtRado Setup General Setup Help 40

EME operation on MW with small dish

What we lack in the antenna we have to compensate otherwise - how?

- 1. G/T high as possible
- 2. Enough power
- Frequency accuracy and stability including precise
 Doppler shift compensation ability
- Precise automatic antenna pointing with continual monitoring of Moon noise and possibility to change plane of linear polarization
- 5. Advanced signal processing
- 6. Good planning

Ad 1) LNA plays a much bigger role than with large antennas

$$T_{S} = T_{SKY} + T_{G} + T_{bM} + T_{RX} = T_{e} + T_{RX}$$

Ad 2) Enough power is - 20 W minimum, 50 W exactly right on 10 GHz (one is enough)

Ad 3) Frequency accuracy and stability including Doppler shift compensation ability

Because with a small antenna we will work along CW often DIGI modes the frequency precision must be better than 100 Hz on 10 GHz. For this reason, the frequencies of the microwave transverter but also VHF/UHF transceiver need to be controlled by an atomic oscillator - cesium (GPS) or rubidium.

MATLAB program - source data are from WSJT-X

 a) The problem is that most older transceivers cannot change the frequency by CAT during transmission.

b) Most older transceivers have the lowest step 10 Hz at the CAT control.

WS/T-X v2.6.0-rc1 by K1/T, G4WJS, K9AN, and IV3NWV

Mode Decode Save Tools Help

0 ō 0

ΕŪ 10 10

10 10

	the subset of the Charles of the sub-			and a straight data internal and			
	UTC	N	Level	SNR	dBerr	DF	Width
Since WSIT-X v2 6 0-rc1	09:26:02	1	56.1	-21.7	5.7	75.1	190.2
	09:26:05	2	56.0	-25.9	99.0	75.1	190.2
Since WSJT-X v2.6.0-rd Echo SNR values are real also with very big spread.	09:26:08	1	56.0	-99.0	99.0	33.7	190.1
	09:26:11	2	56.1	-99.0	99.0	-25.3	190.1
	09:26:17	3	56.2	-23.6	4.4	-6.2	190.1
Echo SNK values are	09:26:23	4	56.1	-20.7	1.4	4.4	190.1
	09:26:29	5	56.2	-19.2	0.9	-5.5	190.0
real also with verv	09:26:35	6	56.1	-18.6	0.7	4.4	190.0
	09:26:41	7	56.1	-18.6	0.6	4.0	189.9
big opposed	09:26:47	8	56.3	-18.0	0.5	4.0	189.9
big spread.	09:26:53	9	56.2	-17.5	0.5	4.4	189.8
0	09:26:59	10	56.1	-17.2	0.5	4.4	189.8
	09:27:05	11	56.1	-16.8	0.5	4.4	189.8
	09:27:11	12	56.2	-16.8	0.5	4.4	189.7
	09:27:17	13	56.2	-10.0	0.5	4.4	189.7
	09127123	14	56.2	-10.0	0.5	4.4	189.7
	09:27:29	1.0	56.0	-10.0	0.5	9.9	100.6
	09127135	10	56.1	-16.5	0.5	4.4	100.6
	09:27:41	10	56.4	-16.6	0.5	-1.1	100.5
SIT-X - Echo Graph				16.6	0.5	-1.1	109.4
-200 -150 -100 -50 Q	50	100	150	-16.8	0.5	-1.1	89.4
\land					Erma	1	Danada
$\wedge \wedge$					E1-036		Twoode
	\mathcal{A}			2 858			
	L.						
	\sim						
\sim	\vee	\sim	$\sim \sim$				
Bins/Pixel 1 🖨 Gain	Smooth 5 🖨 N:	20 Colors					

19th International EME Conference, Prague 2022

Ad 5) – WSJT-X

Q65

T/R Period (s)	B Spacing Width (Hz)		C Spacing (H	Width z)	I Spacing (H) Width (z)	E Spacing Width (Hz)		
15	13.33	867	26.67	1733					
30	6.67	433	13.33	867	26.67	1733			
60	3.33	217	6.67	433	13.33	867	26.67	1733	
120	1.50	98	3.00	195	6.00	390	12.00	780	
300	0.58	38	1.16	75	2.31	150	4.63	301	

Ad 4a) – Longer T/R period at low SNR

Moon Libration – spreaded spectrum

OK2AQ – 1.2 m offset dish

OK2AQ – 1.8 m offset dish

IK6CAK ex IOKGB since 196 Confirming QSO to RADIO **MAURO DAINESE** OKZAQ Contrada Piane 38 66023 Francavilla al Mare (CH) EME TIME E-mail: ik6cak@gmail.com DAY MONTH YEAR UTC MHz 2020 1636 10 GHZ 03 05 Ø1.2 OHESET 7 W QSL: D PSE XTNX 73

VK7MO – 0.77 m dish

CQ Zone 15 ITU Zone 28 Loc. JN7201

2 WAY

QPA64

RST

- 15

119 CW + Digi Initials 40 DXCC

Smallest station worked – 1.2 m dish, 7W

HB9Q as 3DA0MB, EA6/HB9COG and HB0/HB9DBM - 1.5 m dish

23 cm & 1.8 m offset dish & Adalm PLUTO (my new toy)

Adalm PLUTO + new TCXO & external GPSDO

19th International EME Conference, Prague 2022

In June 2022 were established 64 QSOs with 44 {#]

QRPP Experiment

No	Date	UTC	Mode	Callsign	Sent	Rcvd	Locator	# CW	# JT	# MIX	DXCC	QSL	Remarks
75	27.07.2022	16:16	Q65-60C	G4CCH	-15	-23	IO93ql						/5.4 m dish, 500 W//1.8 m dish, 30 W
74	27.07.2022	15:32	Q65-120D	K5DOG	-20	-37	EM00wh						/4.4 m dish, 500 W//1.8 m c ish, 30 W
73	26.07.2022	16:18	Q65-120D	KB2SA	-20	-35	DM13ja		not cfm				/1.9 m dish, 850 W//1.8 m Jish, 30 W
72	24.07.2022	13:50	Q65-60C	YO2LAM	-16	-31	KN05ps		48	48	18		/4.5 m dish, 1 kW//1.8 m d ish, 30 W
71	24.07.2022	11:16	Q65-60C	UA9FAD	-23	-26	LO88da						/3 m dish, 100 W//1.8 m d sh, 30 W
70	23.07.2022	12:50	Q65-60C	OK2DL	-12	-21	JN79		47	47			/6 m dish, 1 kW//1.8 m dish, 30 W
69	23.07.2022	12:21	Q65-60C	SM5DGX	-8	-22	JO89nv						
68	23.07.2022	10:02	Q65-60C	I1NDP	-8	-19	JN45al		46	46			/10 m dish, 1 kW//1.8 m d sh, 30 W
67	22.07.2022	10:15	Q65-60C	OK1DFC	-10	-15	JN79gw						
66	22.07.2022	9:53	Q65-60C	OK1DFC	-11	-15	JN79gw						on 1268 MHz
65	22.07.2022	9:25	Q65-60C	OK1DFC	-10	-19	JN79gw		45	45			/ 8 m dish, 1 kW//1.8 m dish, 30 W

24 GHz is in the preparation phase

Thank you for your attention

http://www.urel.feec.vutbr.cz/esl/files/EME/EME.htm