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4.1 Drátový dipól

Podrobnější popis

In this chapter, we introduce the reader to the moment-method computing of parameters of a wire dipole. We present all the information in

English in this layer so that the reader can become familiar with English terms,  which are used in the area of antennas and computational

electromagnetics. The Dutch translation of this chapter can be found in the layer B.

All the technical parameters of antennas (gain,  input impedance,  directivity pattern) can be computed if current

distribution on the antenna surface is known. Unfortunately,  computation of current distribution makes troubles

because integral equations have to be solved.

There are two basic approaches to the solution of integral equations – iterative and moment ones. Iterative methods

are based on rough approximation of the current distribution (e.g. sinus one) that is iteratively made more accurate.

On the other hand, moment methods transform integral equations to a set of simultaneous linear equations, which

are solved by matrix operations.

In this chapter,  our attention is turned to the moment analysis of wire antennas.  In all the cases,  antennas are

supposed to be circular cylinders of the radius a and of the length 2h. The antenna axis is situated to the axis z (fig.

4.1B.1) of the cylindrical coordinate system (r, ρ, z). The antenna is placed to the vacuum (µ = µ0, ε = ε0, σ = 0)

and no losses are considered.

In the center of the cylinder (z=0),  there is  a short  gap.  In the gap,  we assume a

hypothetical harmonic generator,  which produces an azimuthally symmetric exciting

electrical field (fig. 4.1B.2). The voltage across the gap

V = − ⌠⌡gap
Ezdz ( 4.1B.1 )

is supposed to be 1V. In (4.1B.1), Ez is the z-component of the exciting electrical field intensity on the interpolated

antenna surface (fig. 4.1B.2). Outside the gap, Ez is zero due to the perfect conductivity> of the cylinder.

I. Methods of Moments

Let us to consider a general integral equation

⌠⌡
a

b

f (z, ξ)dξ = g(z), ( 4.1B.2 )

where f  is an unknown function,  <a,b> is the integration interval and g  is a known function describing sources.  The moment solution of

(4.1B.2) can be reached within 3 steps:

The unknown function f is approximated by a linear combination of known basis functions fn and unknown coefficients cn

f ≈ f̃ = ∑
n = 1

N
cn fn .

( 4.1B.3 )

1.

The approximation of the unknown function f~ is substituted back into the solved equation (4.1B.2). After that, the summation and the

integration are swapped. This yields

∑
n = 1

N
cn

⌠⌡
a

b

fn(z, ξ)dξ = g(z) + R(z). ( 4.1B.4 )

Here, R(z) is the residuum which expresses the fact that the approximation f~ does not meet (4.1B.2) exactly. Equation (4.1B.4) is one

equation for N unknown coefficients cn.

2.

The approximation f~ is as accurate as possible if the residuum R is minimal. Hence, the residuum is minimized by the method of

weighted residua : product of a weighting function w and the residuum R integrated over the region of interest <a, b> has to be zero [5].

If N weighting functions are used then the set of N simultaneous linear equations for N unknown coefficients cn is obtained

3.
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Fig. 4.1B.3 Multi-basis approximations a) piece-wise

constant, b) piece-wise linear

⌠⌡
a

b

wm(z)R(z)dz = 0 m = 0,1,...  N , ( 4.1B.5a )

∑
n =1

N
cn

⌠

⌡
⎮⎮⎮
a

b

wm(z)⌠
⌡
a

b

fn(z, ξ)dξdz = ⌠
⌡
a

b

wm(z)g(z)dz. ( 4.1B.5b )

Both basis functions and weighting functions have to be linearly independent on the interval <a,b>.

II. Basis Functions

Basis functions can be global or local ones. Global basis functions are defined on all the region of interest <a,b>. E.g., system of functions

fn(z) = cos
⎛⎝πnz

h
⎞⎠ ( 4.1B.6 )

is  on  <a,b>  linearly  independent  and  coefficients  cn  in  the

approximation

f (z) ≈ f̃ (z) = ∑
n = 1

N
cn fn = ∑

n = 1

N
cn cos

⎛
⎝⎜

πnz

h

⎞
⎠⎟ ( 4.1B.7

)

have  got  then  meaning  of  Fourier  coefficients  of  the  current

distribution.

Approximation  based  on  the  global  basis  functions  is  called  the

single-basis approximation.

Local basis functions are defined on all the region too but  each of

them is non-zero only on a sub-region of the interval of interest <a,b>

as can be seen in fig. 4.1B.3.  If basis functions are normalized then

coefficients cn have got the meaning of nodal values (samples) of the

computed function f (fig.  4.1B.3).  Approximation based on the local

basis functions is called the multi-basis approximation.

III. Weighting functions

Point matching and Galerkin’s methods are the most common ways of the residuum minimization.

Point matching (or collocation) uses Dirac pulses, which are place to points where the values of unknown current distribution are computed, as

weighting functions

wm(z) = δ(z − zm). ( 4.1B.8 )

Point matching method exhibits very low computational requirements because one integration is eliminated in 4.1B.5b) thanks to the filtering

property of Dirac pulses

∑
n = 1

N
cn

⌠⌡
a

b

fn(zm , ξ)dξ = g(zm). ( 4.1B.9 )

On the other hand, the residuum minimization is related to the matching points zm only.

In Galerkin’s method, weighting functions are identical with basis ones

wm(z) = fm(z). ( 4.1B.10 )

Galerkin’s method exhibits higher computational requirements in comparison with point matching because one of integrations is not eliminated in

this case. On the other hand, the residuum minimization is performed with all the points z ∈ <a,b>.

IV. Wire antennas

Assume the cylindrical antenna of fig. 4.1B.1. Then, the radiated electromagnetic field can be expressed in terms of vector potentials A and

scalar potentials φ, respectively. Potentials have to meet inhomogeneous wave equations [2]
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Fig. 4.1B.4 Piece-wise constant

approximation

∂2 Az(z)
∂ z2

+ k 2 Az(z) = − µ0 Jz(z), ( 4.1B.11a )

∂2 φ(z)
∂ z2

+ k 2φ(z) = −
ρ(z)
ε0

. ( 4.1B.11b )

Here, Jz is the z-component of the current density [A.m-2] impressed to the antenna by the source, ρ is the volume charge density [C.m-3] on

the antenna, Az is the z-component of the vector potential and φ is the scalar potential, k=2π/λ is the wave-number and λ is the wavelength.

The current flowing on the antenna causes charge accumulation at the antenna cylinder. This fact can be described by the continuity equation

[2]

∂ Jz(z)
∂ z

+ jωρ(z) = 0. ( 4.1B.12a )

If radius of the antenna cylinder is much smaller than the wavelength a << λ then the current and charge can be assumed to be concentrated in

the axis of the cylinder [5], and solving (4.1B.11) yields [2]

Az(z) =
µ

4π

⌠
⌡
⎮⎮

2h

Iz(ξ) exp[− jkR(z, ξ)]
R(z, ξ) dξ, ( 4.1B.12b )

φ(z) =
1

4πε

⌠
⌡
⎮⎮

2h

σ(ξ) exp[− jkR(z, ξ)]
R(z, ξ) dξ. ( 4.1B.12c )

Here, Iz(ξ) is the current [A] flowing in the axis of wire, σ(ξ) denotes the length charge density [C.m-1] on the axis of wire, R(z,ξ) is the distance

between the location ξ of electromagnetic field sources Iz(ξ) and σ(ξ) and the location z potentials A(z) and φ(z).

On the basis of A(z) and φ(z), electrical intensity of the field radiated by the antenna can be computed [2]

Ez
s(z) = − jωAz(z) −

∂φ(z)
∂ z

. ( 4.1B.12d )

Electrical intensity has to meet the boundary condition on the antenna surface S

Ez
i + Ez

s = 0 on S ( 4.1B.12e )

Ez
i denotes electrical intensity of the incident wave. In the case of an usual transmitting antenna, Ez

i is the intensity by the feeding source (on

the antenna surface), i.e. the intensity in the exciting gap (fig. 4.1B.2).

If the current distribution on the antenna is to be computed then the set of equations (4.1B.12) has to be solved.

In order to meet the boundary condition 4.1B.12e), electrical intensity (and consequently potentials) has to be computed on the surface of the

wire. That is why the distance R is described by the equation

R(z, ξ) = a2 + (z − ξ)2√ . ( 4.1B.13 )

In the following paragraphs, piece-wise constant basis functions and Dirac weighting functions are used to solve (4.1B.12).

In  the  first  step,  the  analyzed  structure  has  to  be  discretized.  Segmentation  of  the

antenna is depicted in fig. 4.1B.4.  Lower bounds of segments are signed by ”-”, upper

ones by ”+”.  Lower bound of the first segment and upper bound of the last one are

shifted  from  the  ends  of  the  antenna  in  order  to  meet  the  condition  I(-h)=I(h)=0.

Segments’ lengths are ∆ = 2α.

Substitung piece-wise constant approximation to the integral equations 4.1B.12b,c) yields

Az(z) ≈
µ

4π
∑

n = 1

N
In

⌠
⌡
⎮⎮

−h+(n−0,5)∆

−h+(n+0,5)∆

exp[− jkR(z, ξ)]
R(z, ξ) dξ,

( 4.1B.14b )

φ(z) ≈
1

4πε
∑

n =1

N
σn

⌠
⌡
⎮⎮

−h+(n−0,5)∆

−h+(n+0,5)∆

exp[− jkR(z, ξ)]
R(z, ξ) dξ.

( 4.1B.14c )
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Here, In and σn are nodal values of current and charge density distributions.

Since the first derivative of the piece-wise constant approximation is zero on the constant sections and does not exist on their borders, 4.1B.12a)

and 4.1B.12d) are rewritten in terms of finite differences. If the fact that In  = Iz(-h+n∆) is considered then the continuity equation can be

expressed as

Iz(−h+(n+1)∆)− Iz(−h+n∆)
∆

+ jωσ(−h + (n + 0,5)∆) ≈ 0 ( 4.1B.15a )

and the relation for computing electrical intensity is then of the form

Ez
s(−h + n∆) ≈ − jωAz(−h + n∆) −

φ[−h+(n+0,5)∆]−φ[−h+(n−0,5)∆]
∆

. ( 4.1B.15d )

Relations 4.1B.15a) and 4.1B.15d) show that Dirac pulses for point matching have to be placed to the center of segments for the vector

potential

Az(−h + m∆) ≈
µ

4π
∑

n =1

N
In

⌠
⌡
⎮⎮

−h+(n−0,5)∆

−h+(n+0,5)∆

exp[− jkR(−h + m∆, ξ)]
R(−h + m∆, ξ) dξ

( 4.1B.15b )

and to borders of segments for the scalar potential

φ[−h + (m + 0,5)∆] ≈
1

4πε
∑

n =1

N
σ

n +
⌠
⌡
⎮⎮

−h+n∆

−h+(n+1)∆

exp{− jkR[−h + (m + 0,5)∆, ξ]}
R[−h + (m + 0,5)∆, ξ] dξ. ( 4.1B.15c )

In 4.1B.15c), σn+ = σ [-h+(n+0.5)∆].

Now, (4.1B.15) can be rewritten into a more compact form

σ
n + ≈

−1
jω

⎡
⎣⎢

In+1 − In

∆

⎤
⎦⎥, ( 4.1B.16a )

Az(m) ≈
µ

4π
∑

n =1

N
In

⌠
⌡
⎮⎮
∆n

exp[− jkR(m, ξ)]
R(m, ξ) dξ,

( 4.1B.16b )

φ(m + ) ≈
1

4πε
∑

n = 1

N
σ

n +
⌠
⌡
⎮⎮

∆
n +

exp[− jkR(m + , ξ)]
R(m + , ξ) dξ,

( 4.1B.16c )

−Ez
i(m) ≈ − jωAz(m) −

φ(m + )−φ(m − )
∆

. ( 4.1B.16d )

In 4.1B.16d), the boundary condition 4.1B.12e) is included.

Now, let’s have a look at the continuity theorem 4.1B.16a); it expresses the fact that segments of the antenna can be replaced by elementary

electrical dipoles (fig.  4.1B.5).  Taking this idea in mind,  submission of nth segment to the scalar potential can be computed on the basis of

4.1B.16c) as

φ(m + ) =
1

jωε

⎡

⎣

⎢⎢⎢⎢
In

⌠
⌡
⎮⎮

∆
n +

exp(− jkR)
4πR

dξ − In
⌠
⌡
⎮⎮

∆n −

exp(− jkR)
4πR

dξ

⎤

⎦

⎥⎥⎥⎥
1
∆

. ( 4.1B.17 )

Substituting (4.1B.17) and 4.1B.16b) to 4.1B.16d) and multiplying both sides by ∆ yields

Ez
i∆ = Z I, ( 4.1B.18 )

where

Zmn = jωµ∆
⌠
⌡
⎮⎮
∆n

exp[− jkR(m, ξ)]
4πR(m, ξ) dξ +

( 4.1B.19 )
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Fig. 4.1B.5 Antenna as a set of elementary

electrical dipoles

+
1

jωε

⎡

⎣

⎢⎢⎢⎢
⌠
⌡
⎮⎮

∆
n +

exp[− jkR(m + , ξ)]
4πR(m + , ξ) dξ −

⌠
⌡
⎮⎮

∆n −

exp[− jkR(m + , ξ)]
4πR(m + , ξ) dξ

⎤

⎦

⎥⎥⎥⎥
1
∆

−

−
1

jωε

⎡

⎣

⎢⎢⎢⎢
⌠
⌡
⎮⎮

∆
n +

exp[− jkR(m − , ξ)]
4πR(m − , ξ) dξ −

⌠
⌡
⎮⎮

∆n −

exp[− jkR(m − , ξ)]
4πR(m − , ξ) dξ

⎤

⎦

⎥⎥⎥⎥
1
∆

,

denotes submission of current and charge on nth segment to the voltage induced

on the mth segment.

Since electrical intensity is zero on all the segments except of the source gap,

elements  of  voltage vector  are  zero except  of  the  gap-segment  corresponding

element that equals 1. Then, (4.1B.18) provides the current distribution I. Ratio

of input voltage and input current gives then the input impedance of the analyzed

antenna.

An example of the analysis results is depicted on fig. 4.1B.6; module and phase

of the current distribution of the dipole h = λ and a = 0.001588 λ is plotted there.

The presented results (fig. 4.1B.6) can be obtained using a computer program,

whose user’s guide is presented in the layer C.  In the layer D,  the program is

described from the programmer’s point of view.

Fig. 4.1B.6 Current distribution on the symetrical dipole. Piece-wise constant

approximation, point matching. Length of dipole 2λ, diameter 0.001588λ,

number of segments 64.
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