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Abstract. This paper deals with simplification and im-
provement of data timing synchronization algorithms. 
Timing error synchronizers are usually the most compli-
cated subsystems in the demodulator, and limit the DSP 
technique used for the high-rate application. This article is 
focused on feedback timing estimators for PSK modulation 
schemes, and shows modifications of widely used algo-
rithms, that are suitable for the DSP implementation, as 
well as reach better parameters of the detection process. 
The methods applied in the evaluation of a timing error 
detector, which is a crucial part of the synchronizer, are 
described in the last part. 
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1. Introduction 
Structures of all feedback timing synchronizers result 

from a general closed loop, where the tracked parameter is 
the delay between optimum and actual symbol timings. The 
analytical description of such a closed loop corresponds to 
a phase lock loop (PLL) analysis, where the phase error is 
replaced by the time error or the delay. Consequently, the 
feedback timing synchronizer presents a delay lock loop 
(DLL) (Fig. 1).  

Considering an I-Q demodulator, the timing estima-
tion is more complicated than the phase estimation. The 
phase error determination is a simple procedure executed 
by the Phase Error Detector (PED). The phase can be 
easily extracted from the signal components (I and Q) for 
any sample: 
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However, the delay (or symbol timing error) determi-

nation needs at least two consecutive samples. The system, 
which solves this operation, is called as Timing Error De-
tector (TED). Choice of a proper TED algorithm is a cru-
cial point of timing synchronizer design. Above all, it de-
pends on the modulation constellation, impulse shaping 
and the expected signal-to-noise ratio. The best results are 
reached by the application of maximum-likelihood (ML) 
criterion. 

 
Fig. 1. Flow representation of the feedback timing synchronizer. 

Mathematical operations for obtaining ML-based equations 
for TED are derived completely in literature [1]. There are 
three fundamental TED applicable for linear modulations. 
The first of them is the Zero-Crossing Detector (ZCD), 
where the error signal is defined by the following equation: 
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The second algorithm is the well-known Early-Late 
Detector (ELD): 
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The last one is Mueller and Mueller Detector MMD [2], 
which is expressed by: 
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where ĉn determines the current data estimation, ĉn-1 is the 
previous data estimation, yR are filtered input sample, and 

nτ̂  and 
1ˆ −nτ  are estimations for current and previous 

samples. Note that the MMD detector operates on TS-
spaced samples, as opposed to ZCD and ELD which need        
TS/2- spacing. 
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2. TED Algorithms Adjustment for 
DSP Implementation 
Formulae (2), (3), and (4) can be applied in the DSP 

system immediately, but often the utilization of multiplica-
tion does not allow a high-rate of symbol transmission to 
be achieved [3]. The following paragraphs detail the sim-
plification of these algorithms for PSK modulation 
schemes. 

2.1 Modified Zero-Crossing Detector 
The meaning of equation (2) is possible to be expli-

cated as the computation of difference between inter-sam-
ple and arithmetic mean of previous and subsequent 
detected data. The inter-sample is defined as the level of 
signal sampled used exactly in the middle of the samples 
for data detection. In the I-Q plane we obtain two error 
values for the inphase component and the quadrature one. 
Overall error is then expressed as the sum of these 
components: 
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Considerable simplification of digital architecture can 
be reached by the application of low-state modulation 
systems (e.g. BPSK or QPSK), because the number of 
possible couples of detected data is limited. The arithmetic 
means of all combinations of previous and subsequent 
detected data can be saved in the memory table (bank) of 
coefficients. The flow diagram of this modified zero-
crossing detector (MZCD) is shown in Fig. 2. 

 
Fig. 2. Flow chart of modified zero-crossing detector. 

More-state PSK modulation schemes than the QPSK re-
quires weighting functions, which respect signal symbol 
distances in the inphase and quadrature axes. In these cases 
the timing error detector needs a multiplier or we can take 
advantage of fractional symbol distance ratios and apply 
logical shifting operations [4]. 

2.2 Modified Early-Late Detector 
The ELD results from the symmetrical shape of the 

modulation pulse [5]. It performs the comparison of out-
running and delayed inter-samples. This algorithm is cor-
rect, if the previous and subsequent samples are identical, 
failing which an improper error determination arises. This 
phenomenon complicates the data detection with nonequal 
probabilities [6]. The insertion of a coincidence detector, 
which compares previous and subsequent samples, into 
standard ELD produces an important improvement for all 
types of PSK modulation schemes. The block diagram of 
the modified early-late detector (MELD), which is outlined 
in Fig. 3, indicates the operation principle. If I or Q com-
ponents of previous and subsequent samples are the same, 
the computed timing error is enabled to the following 
processing. If I, respectively Q, components are unequal, 
the relevant timing error component is set to zero.  

 
Fig. 3. Flow chart of modified early-late detector. 

3. Comparison of Timing Error 
Detectors  
The modifications in the previous chapters have been 

intended for obtaining more effective high-speed algo-
rithms for digital signal processor implementation. On the 
other hand, some methods contribute to the improvement 
of detection characteristics. The variance of error quantity 
is the best quality index to achieving the minimal bit error 
ratio (BER) of the detector under test [1]. Nevertheless, the 
objective evaluation of detection capability requires precise 
definition of input signal parameters and includes: modu-
lation scheme, characteristics of transmission channel, 
parameters of shaping filtration, range of normalized sig-
nal-to-noise ratio in the detector input etc., which depend 
on the desired application.  
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In the following simulations, the BPSK signals with 
the raised-cosine pulse shaping and additive white 
Gaussian noise AWGN are studied, because this configu-
ration is the most widespread in practice. All simulations 
have assumed an application of the first order digital delay 
loop with the normalized noise bandwidth BLN = 0,01. The 
input signal is generated by the maximum length sequence 
MLS with polynomial function:  

( ) 761 DDDX ⊕⊕= .  (6) 

The MLS warrants equal data probability, which is often 
solved by an appropriate source encoding. 

Simulations are performed for the chosen values of 
roll-off factor α and for the normalized signal-to-noise ratio 
in the range ∈γ <0; 30> dB. The absolute timing error is 
converted into normalized delay, and is expressed by: 
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Fig. 4. Variance of normalized delay vs. normalized signal-to-

noise ratio and roll-off-factor for ZCD or MZCD.  

 
Fig. 5. Variance of normalized delay vs. normalized signal-to-

noise ratio and roll-off-factor for ELD. 

 
Fig. 6. Variance of normalized delay vs. normalized signal-to-

noise ratio and roll-off-factor for MELD. 

 
Fig. 7. Variance of normalized delay vs. normalized signal-to-

noise ratio and roll-off-factor for MMD 

Results of simulations are summarized in Figs 4, 5, 6 
and 7, and they can be generalized for any loop parameters 
and equal data probability. Influence of the roll-off-factor 
on the variance of normalized delay is considerable and 
depends on the applied type of error detector. ZCD and 
ELD show that the variance of delay is growing for the 
small roll-off-factor values contrary to MMD. This effect is 
obvious for high values of the normalized signal-to-noise 
ratio. The modification of zero-crossing detector has no 
impact on the error variance and their characteristics are 
identical. The modification of early-late detector mentioned 
above is effective at increasing the signal-to-noise ratio 
with α- factor approaching one. 

Simulations and their results can be useful in the 
selection of an optimal detector for the given application. 
The results from graphs 4, 5, 6 and 7 are summarized in 
Fig. 8, where they highlight the suitable areas (in γ-α plane) 
for practical applications of the described timing error 
detectors in BPSK demodulator. 
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Fig. 8. The highlighted regions for optimum selection of timing 

error detector type in BPSK demodulator. 

4. Conclusion 
The application of digital systems for high symbol 

rate requires simplification of standard algorithms. How-
ever, this simplification cannot be the cause of decreasing 
characteristics from the point of view of effective signal 
processing. Such an approach is the subject of this paper. 
Two modifications of time error detector for a PSK de-
modulator were shown. They allow the demodulator design 
for high-rate data processing and reach smaller variance of 
delay error than the classical methods for some types of 
modulation schemes.  

The comparison of the standard and modified algo-
rithms for timing error detector was completed. The 
evaluation quantity was the variance of the normalized 
delay, which corresponds well with the available bit error 
rate. The comparison focused on the BPSK modulation 
scheme, but this method can be applied to any other 
modulation scheme. 
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